1,057 research outputs found

    Stability of disk galaxies in the modified dynamics

    Get PDF
    General analytic arguments lead us to expect that in the modified dynamics (MOND) self-gravitating disks are more stable than their like in Newtonian dynamics. We study this question numerically, using a particle-mesh code based on a multi-grid solver for the (nonlinear) MOND field equation. We start with equilibrium distribution functions for MOND disk models having a smoothly truncated, exponential surface-density profiles and a constant Toomre QQ parameter. We find that, indeed, disks of a given ``temperature'' are locally more stable in MOND than in Newtonian dynamics. As regards global instability to bar formation, we find that as the mean acceleration in the disk is lowered, the stability of the disk is increased as we cross from the Newtonian to the MOND regime. The degree of stability levels off deep in the MOND regime, as expected from scaling laws in MOND. For the disk model we use, this maximum degree of stability is similar to the one imparted to a Newtonian disk by a halo three times as massive at five disk scale lengths.Comment: 20 pages, Latex, 8 embedded figures, version to be published in The Astrophys.

    A comparison study of regional atmospheric simulations with an elastic backscattering Lidar and sunphotometry in an urban area

    Get PDF
    We describe a comparison study of Aerosol Optical Thickness (AOT) from numerical simulations using a regional atmospheric model with an elastic backscattering lidar operating at 532 nm and a sunphotometer belonging to the AERONET network at São Paulo (23° S 46° W) city, Brazil, a very populated urban area. The atmospheric model includes an aerosol emission, transport and deposition module coupled to a radiative transfer parameterization, which takes the interaction between aerosol particles and short and long wave radiation into account. A period of one week was taken as case study during the dry season (late August) when intense biomass burning activities occur at remote areas in South America, and meteorological conditions disfavor the pollution dispersion in the city of São Paulo. The situation presented here showed how smoke from biomass burning in remote areas is transported to the south-east part of Brazil and affects the optical atmospheric conditions in São Paulo. The numerical simulations are corroborated by in situ measurements of AOT obtained by lidar and sun photometry

    Slow m=1 instabilities of softened gravity Keplerian discs

    Full text link
    We present the simplest model that permits a largely analytical exploration of the m=1 counter-rotating instability in a "hot" nearly Keplerian disc of collisionless self-gravitating matter. The model consists of a two-component softened gravity disc, whose linear modes are analysed using WKB. The modes are slow in the sense that their (complex) frequency is smaller than the Keplerian orbital frequency by a factor which is of order the ratio of the disc mass to the mass of the central object. Very simple analytical expressions are derived for the precession frequencies and growth rates of local modes; it is shown that a nearly Keplerian disc must be unrealistically hot to avoid an overstability. Global modes are constructed for the case of zero net rotation.Comment: 6 pages, four figure

    Bosonic t-J Model in a stacked triangular lattice and its phase diagram

    Full text link
    In this paper, we study phase diagram of a system of two-component hard-core bosons with nearest-neighbor (NN) pseudo-spin antiferromagnetic (AF) interactions in a stacked triangular lattice. Hamiltonian of the system contains three parameters one of which is the hopping amplitude tt between NN sites, and the other two are the NN pseudo-spin exchange interaction JJ and the one that measures anisotropy of pseudo-spin interactions. We investigate the system by means of the Monte-Carlo simulations and clarify the low-temperature phase diagram. In particular, we are interested in how the competing orders, i.e., AF order and superfluidity, are realized, and also whether supersolid forms as a result of hole doping into the state of the 3×3\sqrt{3}\times \sqrt{3} pseudo-spin pattern with the 120o120^o structure.Comment: 18 pages, 17 figures, Version to appear in J.Phys.Soc.Jp

    HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: : an intercomparison study

    Get PDF
    This is an Open Access article distributed under the Creative Commons Attribution 3.0 License, https://creativecommons.org/licenses/by/3.0/. © Author(s) 2017. Published by Copernicus Publications on behalf of the European Geosciences Union.We present a detailed evaluation of remotely-sensed aerosol microphysical properties obtained from an advanced, multi-wavelength High Spectral Resolution Lidar (HSRL-2) during the 2013 NASA DISCOVER-AQ field campaign. Vertically resolved retrievals of fine mode aerosol number, surface area, and volume concentration as well as aerosol effective radius are compared to 108 co-located, airborne in situ measurement profiles in the wintertime San Joaquin Valley, California, and in summertime Houston, Texas. An algorithm for relating the dry in situ aerosol properties to those obtained by the HSRL at ambient relative humidity is discussed. We show that the HSRL-2 retrievals of ambient fine mode aerosol surface area and volume concentrations agree with the in situ measurements to within 25% and 10%, respectively, once hygroscopic growth adjustments have been applied to the dry in situ data. Despite this excellent agreement for the microphysical properties, extinction and backscatter coefficients at ambient relative humidity derived from the in situ aerosol measurements using Mie theory are consistently smaller than those measured by the HSRL, with average differences of 31% 5% and 53% 11% for California and Texas, respectively. This low bias in the in situ estimates is attributed to the presence of coarse mode aerosol that are detected by HSRL-2 but that are too large to be well sampled by the in situ instrumentation. Since the retrieval of aerosol volume is most relevant to current regulatory efforts targeting fine particle mass (PM2:5), these findings highlight the advantages of an advanced 3+2 HSRL for constraining the vertical distribution of the aerosol volume or mass loading relevant for air quality.Peer reviewedFinal Published versio

    Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells

    Get PDF
    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 \u3bcg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 \ub1 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 \ub1 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 \u3bcg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 \u3bcg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL

    Beam-Breakup Instability Theory for Energy Recovery Linacs

    Full text link
    Here we will derive the general theory of the beam-breakup instability in recirculating linear accelerators, in which the bunches do not have to be at the same RF phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs) where bunches are recirculated at a decelerating phase of the RF wave and for other recirculator arrangements where different RF phases are of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable cases, which show: (a) Why different higher order modes (HOM) in one cavity do not couple so that the most dangerous modes can be considered individually. (b) How different HOM frequencies have to be in order to consider them separately. (c) That no optics can cause the HOMs of two cavities to cancel. (d) How an optics can avoid the addition of the instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit deviations produced by cavity misalignments has also been introduced. It is shown that the BBU instability always occurs before the orbit excursion becomes very large.Comment: 12 pages, 6 figure

    Aplicativo Multiplataforma para Monitoramento de Diabetes Mellitus

    Get PDF
    O Brasil é o quinto no número de pessoas com mais de 65 anos com diabetes, 12,5 milhões de pessoas diagnosticadas com diabetes, o que coloca o Brasil na quarta posição entre os 10 países com o maior número de indivíduos com diabetes [IDF, 2017]. Considerando a necessidade dos diabéticos que necessitam de monitoramento constante e regular da glicose [Dovc et al., 2018], este artigo apresenta o desenvolvimento de uma aplicação multi-plataforma. integrado a um site consulto

    Equilibrium Initialization and Stability of Three-Dimensional Gas Disks

    Full text link
    We present a new systematic way of setting up galactic gas disks based on the assumption of detailed hydrodynamic equilibrium. To do this, we need to specify the density distribution and the velocity field which supports the disk. We first show that the required circular velocity has no dependence on the height above or below the midplane so long as the gas pressure is a function of density only. The assumption of disks being very thin enables us to decouple the vertical structure from the radial direction. Based on that, the equation of hydrostatic equilibrium together with the reduced Poisson equation leads to two sets of second-order non-linear differential equation, which are easily integrated to set-up a stable disk. We call one approach `density method' and the other one `potential method'. Gas disks in detailed balance are especially suitable for investigating the onset of the gravitational instability. We revisit the question of global, axisymmetric instability using fully three-dimensional disk simulations. The impact of disk thickness on the disk instability and the formation of spontaneously induced spirals is studied systematically with or without the presence of the stellar potential. In our models, the numerical results show that the threshold value for disk instability is shifted from unity to 0.69 for self-gravitating thick disks and to 0.75 for combined stellar and gas thick disks. The simulations also show that self-induced spirals occur in the correct regions and with the right numbers as predicted by the analytic theory.Comment: 17 pages, 10 figures, accepted by MNRA
    corecore